
Java Programming

— Basics of Java Programming: Conditional branch —

Waseda University

Problem

Example

When height and weight are given (e.g. 172.0cm, 77.5kg), output the
message according to the difference between Std. weight and given
weight. Messages are the following:

Weight−Std. weight Message

less than −10 Underweight

greater than or equal to −10, less than or equal to10 Normal

greater than 10 Overweight

Equation for calculating Std. weight:

Std. weight(kg) = Height(m)2 × 22

For outputting suitable message, we need conditional branch

There is if statement for selection control.

Problem

Example

When height and weight are given (e.g. 172.0cm, 77.5kg), output the
message according to the difference between Std. weight and given
weight. Messages are the following:

Weight−Std. weight Message

less than −10 Underweight

greater than or equal to −10, less than or equal to10 Normal

greater than 10 Overweight

Equation for calculating Std. weight:

Std. weight(kg) = Height(m)2 × 22

For outputting suitable message, we need conditional branch

There is if statement for selection control.

Conditional branch

if-else statement

if (condition) {

(1): statement when condition is true

} else {

(2): statement when condition is false

}

(1)

Condition	

(2)

true	
 false	

if-else statement

SampleIf.java� �
public class SampleIf {

public static void main(String[] args) {

int x = -5;

if (x < 0) {

System.out.println("x is less than 0.");

} else {

System.out.println("x is not less than 0.");

}

}

}� �

if-else statement

x is less than 0

x < 0	

x is not less than 0

true	
 false	

if-else statement

� �
int x = *;

if (x < 0) System.out.println("x is less than 0.");

else System.out.println("x is not less than 0.");� �
When the statement in { } is one, we can omit { }.� �

int x = *;

if (x < 0) {

System.out.println("x is less than 0.");

}� �

We can omit after else.

Equality and relational operator

Two numbers can be compared
using the relational operators.

In the relational expression,
it is established → “true”
it is not established →
“false”

Example of relational
expression
3 < 5 → true

4 == 8 → false

Equality and relational operator

Operator Meaning
== Equality
!= Inequality
< less than
> grater than
<= less than or equal to
>= greater than or equal to

Example� �
int a = 5;

System.out.println(a > 0); → true

System.out.println(a <= 3); → false

System.out.println(a != 3); → true� �

Equality and relational operator

Two numbers can be compared
using the relational operators.

In the relational expression,
it is established → “true”
it is not established →
“false”

Example of relational
expression
3 < 5 → true

4 == 8 → false

Equality and relational operator

Operator Meaning
== Equality
!= Inequality
< less than
> grater than
<= less than or equal to
>= greater than or equal to

Example� �
int a = 5;

System.out.println(a > 0); → true

System.out.println(a <= 3); → false

System.out.println(a != 3); → true� �

Equality and relational operator

In case of example� �
if (diff < -10) {

System.out.println("Underweight.");

}� �
Variable diff : The difference between weight and Std. weight

When diff is less than −10, it outputs Underweight.

Weight−Std. weight Message

less than −10 Underweight

less than or equal to −10, greater than or equal to 10 Normal

greater than 10 Overweight

Equality and relational operator

“greater than or equal to −10 and less than or equal to10”？� �
if (-10 <= diff <= 10) { ←−This is wrong description
System.out.println("Normal.");

}� �
By using logical operators, we can write it.

Logical operator

The logical operators can be
used to create a compound
relational expression.

Logical conjunction（A && B）

A and B

A and B is true → true,
otherwise false.

Logical operators
Operators Meanig

&& Conjunction
|| Disjunction
! Negation

Logical disjunction（A || B）

A or B Either A or B is true → true, otherwise false.

Negation（!A）

A is true → false，A is false → true

Logical operator

In case of example:

“greater than or equal to −10” and “less than or equal to 10”� �
if (diff >= -10 && diff <= 10) {

System.out.println("Normal.");

}� �
OR� �

if ((diff >= -10) && (diff <= 10)) {

System.out.println("Normal.");

}� �

Example

By using relational and logical operators,� �
if (diff < -10) {

System.out.println("Underweight.");

}

if ((-10 <= diff) && (diff <= 10)) {

System.out.println("Normal.");

}

if (diff > 10) {

System.out.println("Overweight.");

}� �
It is simple, but it is wastefulness.

3 if statement are always processed.

When diff is −12, first if statement is only congruent, but all if
statement is performed.

Example

By using relational and logical operators,� �
if (diff < -10) {

System.out.println("Underweight.");

}

if ((-10 <= diff) && (diff <= 10)) {

System.out.println("Normal.");

}

if (diff > 10) {

System.out.println("Overweight.");

}� �
It is simple, but it is wastefulness.

3 if statement are always processed.

When diff is −12, first if statement is only congruent, but all if
statement is performed.

else if statement

if (condition1) {

statement when condition1 is true

} else if (condition2) {

statement when condition1 is false

and condition2 is true

} else {

statement (otherwise)

}

In this template, else if statement make processing 3 branches.

To add “else if (condition i) { · · · }”, we can make
processing multiway branches.

Example

� �
if (diff < -10) {

System.out.println("Underweight.");

} else if (diff <= 10) {

System.out.println("Normal.");

} else {

System.out.println("Overweight.");

}� �

Example program

Weight4.java� �
public class Weight4{

public static void main(String[] args){
double diff, height, std_weight, weight;

height = 1.73;
weight = 68.0;
System.out.println("Height:" + height + "m, Weight:" + weight + "kg");

std_weight = height * height * 22;
System.out.println("Standard weight : " + std_weight + "kg");

diff = weight - std_weight;
if(diff < -10){
System.out.println("Underweight");

} else if(diff<=10) {
System.out.println("Normal.");

} else {
System.out.println("Overweight.");

}
}

}� �

Multiway branch using switch statement

switch statement
switch (int expression) {

case int expression 1:

statement 1

break;

case int expression 2:

statement 2

break;
...

default:

statement n

}

Switch statement takes an integer type and selects among a number of alternative
case branches.
The default case, which is optional, can be used to perform actions when none of
the specified cases matches the int expression.
The keyword break is optional. The break statement immediately ends the switch
statement.

Example of switch statement

SampleSwitch.java� �
public class SampleSwitch {

public static void main(String[] args) {

int x = *;

switch (x) {

case 1:

System.out.println("x is 1.");

break;

case 2:

System.out.println("x is 2.");

break;

case 3:

System.out.println("x is 3.");

break;

default:

System.out.println("other number.");

}

}

}� �

