
Java Programming

— Class —

Waseda University

Class

pubulic class ClassName {

/* Fields */

/* Constructors */

/* Methods */

}

Classes consist of variables and methods.

Member variables in a class are called fields.

⇓

Creating an instance of a class, we can utilize this in our programs.

Declaring Classes

Example

Define the class Body which has a name, a height and weight as fields
and the method for calculating the standard weight.

� �
public class Body {

String name;

double height;

double weight;

}

name

height

weight

Body Class� �

Declaring Classes

Member variables in a class are called fields

You can define an arbitrary number of fields.

The grouped lists of variables can be used by defining a class.

Instance of the class Body

(1) Declaring the class Body

Body person;

Body person; means only declaring a variable of the class Body

The variable person has no instance of the class Body.

(1)

person

(2)
−−−→ name

height

weight

Creating the variable of Body class

Instance

(2) Creating the instance of the class Body

person = new Body();

The instance of Body is created by new operator.

person = new Body(); actually creates a space in memory.

(1)

person

(2)
−−−→ name

height

weight

Creating the instance of the class Body

You can also write the following code：

Body person = new Body();

Referring fields of a instance

How to refer the fields of the instance

VariableName.FieldsName

person

name · · · person.name

height · · · person.height

weight · · · person.weight

Referring the members of the class Body

assigning the values to the fields：

person.name = "Frank";

person.height = 175.0;

person.weight = 63.5;

person

"Frank"

175.0

63.5

Example (1)

Body.java� �
public class Body {

String name;

double height, weight;

}� �

Example (1)

SampleBody1.java� �
public class SampleBody1 {

public static void main(String[] args) {

Body st1 = new Body();

st1.name = "Frank"; st1.height = 175.0; st1.weight = 63.5;

Body st2 = new Body();

st2.name = "Thomas"; st2.height = 177.0; st2.weight = 72.0;

System.out.println("Student 1");

System.out.println(" " + st1.name);

System.out.println(" " + st1.height + " cm");

System.out.println(" " + st1.weight + " kg");

System.out.println("Student 2");

System.out.println(" " + st2.name);

System.out.println(" " + st2.height + " cm");

System.out.println(" " + st2.weight + " kg");

}

}� �

Example (1)

Compile：� �
$ javac␣Body.java

� � � �
$ javac␣SampleBody1.java

� � � �
$� �

Run：� �
$ java␣SampleBody1

� � � �
Student 1

Frank

175.0 cm

63.5 kg

....� �

Assigning values to members

In SampleBody1.java...

Body st1 = new Body();

st1.name = "Frank";

st1.height = 175.0;

st1.weight = 63.5;

The above codes created the instance of the Body class and
assigned the values to fields.

But we would like to assign the values to members at the same
time that the instance of the Body class is created.

Constructor

Constructor

A constructor constructs an instance of a class.

When the instance of a class is created, then a constructor is
called.

An initial setting is written in a constructor.

A constructor is in a class.

Declaring a constructor� �
public class Body {

String name;

double height, weight;

public Body(String n, double h, double w) {

name = n; height = h; weight = w;

}

}� �
The name of the constructor must have same name as the class
name
A constructor doesn’t have ReturnDatatype.

How to call the constructor

Body person = new Body("Thomas", 177.0, 72.0);

To create a new Body instance, a constructor is called by new

operator.

Overloaded constructor� �
public Body() { — no parameter
name = "";

height = 0.0;

weight = 0.0;

}

public Body(double h, double w) { — parameters are height and weight
name = "";

height = h;

weight = w;

}� �
How to use the constructor：

Body person2 = new Body(); — no parameters

Body person3 = new Body(170.0, 60.0); — set a height and a weight

You can define more than one constructor with different
parameters.(Overloaded constructor)

Example (2)

Body.java� �
public class Body {

String name;

double height, weight;

public Body() {

name = ""; height = 0.0; weight = 0.0;

}

public Body(double h, double w) {

name = ""; height = h; weight = w;

}

public Body(String n, double h, double w) {

name = n; height = h; weight = w;

}

}� �

Example (2)

SampleBody2.java� �
public class SampleBody2 {

public static void main(String[] args) {

Body st1 = new Body("Frank", 175.0, 63.5);

Body st2 = new Body(177.0, 72.0);

Body st3 = new Body();

System.out.println("Student 1");

System.out.println(" " + st1.name);

System.out.println(" " + st1.height + " cm");

System.out.println(" " + st1.weight + " kg");

...

}

}� �

Method

In SampleBody2.java...

Sytem.out.println("Student 1");

Sytem.out.println(" " + st1.name);

Sytem.out.println(" " + st1.height + " cm");

Sytem.out.println(" " + st1.weight + " kg");

Display the members of the class Body using a method

⇓

Method

A method is a collection of statements that are grouped together
to perform an operation.

A method may have parameters and return value

Methods appear inside a class body.

Method� �
public class Body {
String name;
double height; weight;

/* Declaring a class */

public void print() {
System.out.println(" name : " + name);
System.out.println("height : " + height + " cm");
System.out.println("weight : " + weight + " kg");

}
}� �
Method is defined in a class
Methods and fields are member of class.

How to use a method in a class：

Body person = new Body("Frank", 175.0, 63.5);

person.print();

Example (3)

Body.java� �
public class Body {
String name;
double height, weight;
public Body() {
name = ""; height = 0.0; weight = 0.0;

}
public Body(double h, double w) {
name =""; height = h; weight = w;

}
public Body(String n, double h, double w) {
name = n; height = h; weight = w;

}
public double stdWeight() {
return height * height * 22.0 / 10000;

}
public void print() {
System.out.println(" name : " + name);
System.out.println("height : " + height + " cm");
System.out.println("weight : " + weight + " kg");

}
}� �

Example (3)

SampleBody3.java� �
public class SampleBody3 {

public static void main(String[] args) {

double sw;

System.out.println("== Student 1 ==");

Body st1 = new Body("Frank", 175.0, 63.5);

st1.print();

sw = st1.stdWeight();

System.out.println("standard weight : " + sw);

System.out.println("== Student 2 ==");

Body st2 = new Body("Thomas", 177.0, 72.0);

st2.print();

sw = st2.stdWeight();

System.out.println("standard weight : " + sw);

}

}� �

The difference between primitive variable and reference variable

The primitive variable (e.g. int and double) is the variable which
has a value.

The reference variable is the variable which has an address

SampleBody4.java� �
public class SampleBody4 {

public static void main(String[] args) {

Body st1 = new Body("Frank", 175.0, 63.5);

Body st2;

st2 = st1;

st2.name = "Robert";

System.out.println("== Student 2 ==");

st2.print();

System.out.println("== Student 1 ==");

st1.print();

}

}� �

Example (4)

Run：� �
$ java␣SampleBody4

� � � �
== Student 2 ==

name : Robert

height : 175.0 cm

weight : 63.5 kg

== Student 1 ==

name : Robert

height : 175.0 cm

weight : 63.5 kg� �
Why did the result occur?

A variable for class(reference variable)is the variable which has a
address of object.

the address of st1 is the same as st2.

